Improving your 40 through 10 Meter Antennas for the Declining Solar Cycle

- Horizontally polarized antennas
- Single Yagi stations
- Single tower stations
- Stacked Yagis
- Care and feeding of coaxial cables

Two More Years of Declining Solar Activity Then Three+ Years of Solar Minimum

ISES Solar Cycle F10.7cm Radio Flux Progression
Observed data through Feb 2016

NOAA/SWPC Boulder,CO USA

What About Solar Cycle 25 ??

Precursors of a possibly weak Solar Cycle 25

- Unusually weak solar polar magnetic field strengths
 - field strengths should reach their peak between 2018 and 2020
 - www.solen.info/solar/polarfields/polarfields.jpg
- Unusually large numbers of spotless days
 - possibly starting later this year or next year
- Unusually quiet geomagnetic field from 2018 to 2020+
 - reported by the A-index
- Unusually late appearance of new Solar Cycle 25 sunspots
 - new Solar Cycle 25 sun spots should appear by 2020
- Unusually long solar minimum
 - solar flux in the low 70s persisting after 2020

Accurate Cycle 25 forecasting is not possible until about three years after solar minimum

Declining Solar Activity Since Cycle 22

Suggests a Weak Solar Cycle 25

Cycle 25?

The Sun's Polar Magnetic Field Strength

A Reliable Precursor of Solar Cycle 25

6 dB of "Free" Ground Gain

- A horizontally polarized dipole, Yagi or quadeasily provides 6 dB of useful ground gain
 - but only if you install it an appropriate height
 - vertical antennas can achieve equivalent ground gain only over highly conductive soil such as a salt marsh
- Stacked HF Yagis achieve higher gain mainly by suppressing undesired high angle radiation and redistributing the power into the main low angle beam
 - stacked Yagis must be installed at appropriate heights to achieve the expected results

High Performance Antennas for 40 Meters

- High horizontal dipole at least 70 feet high for DX contests
 - otherwise use a four-square vertical array with 30-60 radials
 - 40-50 foot high dipole is excellent for Sweepstakes and Field Day
- Higher gain: 2 element Yagi at 70-100 feet high
 - significant improvement over a simple horizontal dipole for DX
 - a Cushcraft XM-240 at 70-100+ feet high is very cost effective
- Highest gain: full size 3 element Yagi at 100-140+ feet high
 - but don't underestimate the high cost and complexity of the effort!
- High performance receiving antennas
 - 200 foot Beverages
 - 4-square and 8-circle arrays of 14 foot verticals

4-Square Vertical Array for 40 Meters

- A 4-square vertical array is good alternative to a Yagi if you cannot install it at least 70 feet high
 - install a 4-square at least 40 feet from all towers
 - more spacing will significantly improve its performance
 - at least 30 to 60 slightly buried 35 foot radials under each vertical
- A 4-square is an excellent receiving antenna

The Comtek 4-Square Controller

High Performance Antennas for 20 Meters

- A horizontal Yagi or quad is always the best choice
 - if you can install your antenna at 35 feet high or higher
 - otherwise use a four-square vertical array with 30-60 radials
- Moderate gain: small tri-band Yagi, hex-beam or quad
 - a small Yagi at 50 to 70 feet high will produce good DX results
 - a small Yagi at 35 to 50 feet high for Sweepstakes and Field Day
- High gain: full size tri-band Yagi, small monoband Yagi or quad at 70 to 100 feet high for excellent DX results
- Highest gain: two stacked monoband Yagis on a 100-140 foot tower (170 to 200 feet high for three stacked Yagis)
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 5 Element 20 Meter Yagis 48 Foot Booms 50 and 100 Feet High

The Array Solutions Stack Match

High Performance Antennas for 15 Meters

- Horizontal polarization is always the best choice
 - if you can install your antenna 35 feet high or higher
 - otherwise use a four-square vertical array with 30 to 60 radials
- Moderate gain: small tri-bander Yagi, hex-beam or quad
 - a small Yagi at 40 to 50 feet high will produce good DX results
 - a small Yagi at 30 to 50 feet high for Sweepstakes and Field Day
- High gain: a full size tri-band Yagi, small monoband Yagi or quad at 70 to 90 feet high for excellent DX results
- Highest gain: two stacked monoband Yagis on an 80-90 foot tower (120-140 feet high for three stacked Yagis)
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 6 Element 15 Meter Yagis 48 Foot Booms 47 and 94 Feet High

High Performance Antennas for 10 Meters

- Horizontal polarization is always your best choice
 - if you can install your antenna only 25 feet high or higher
 - otherwise use a four-square vertical array with 30 to 60 radials
- Moderate gain: small tri-band Yagi, hex-beam or quad
 - a small Yagi 25 to 50 feet high will produce good DX results
 - a small Yagi at 25 to 50 feet high for Sweepstakes and Field Day
- High gain: a full size tri-band Yagi, small monoband Yagi or quad, at 50 to 70 feet high for excellent DX results
- Highest gain: two stacked monoband Yagis on a 60-70 foot tower (90 to 100 feet high for three stacked Yagis)
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 6 Element 10 Meter Yagis 36 Foot Booms 35 and 70 Feet High

Competitive One Tower Antenna Systems

- 50-60 foot tower and a small rotator (e.g., HyGain Ham-IV)
 - small tri-band Yagi, Hex-beam or quad
 - 40 and 80 meter dipoles and a 160 meter inverted-L
- 70-80 foot tower and a medium rotator (e.g. HyGain T2X)
 - Cushcraft XM-240 two element 40 meter Yagi
 - large tri-band Yagi such as the DX Engineering Skyhawk
 - 80 meter dipole and a 160 meter inverted-L
- 100-140+ foot tower and a large rotator (e.g., M2 Orion)
 - Cushcraft XM-240 two element 40 meter Yagi
 - monoband Yagis such as the Hy-Gain LJ series on ring rotators
 - 80 meter dipole and a 160 meter inverted-L

Achieving and Maintaining Low Loss Coaxial Cables

- Select appropriate low loss coaxial cables for each antenna
- Protect your investment
 - water entry and condensation are persistent, serious threats to the competitive performance of your station
- Hard-line (e.g., Heliax or 75 ohm CATV) coaxial cables are your best choice for cable runs longer than 100 feet
 - RG-213 and all other flexible jacket coaxial cables are very susceptible to physical jacket damage and water entry
 - a pin hole in the jacket can quickly cause a high loss cable
 - carefully protect your coax cables from physical damage and water entry
- Assure long term performance
 - test and inspect your cables and connectors at least annually

Coaxial Cable Monetary Considerations

- The selection, installation and maintenance of coaxial cables and connectors should be among your most important investments when building and improving your competitive station
 - is the proper grade of coaxial cable worth your additional cost?
 - is attention to the many details of installation worth your extra effort?
 - is annual inspection to preserve your investment worth your effort?
- Yes
 - if you want trouble-free low loss coax cables for 25 years or longer
- No
 - if you don't mind the high cost and disappointment of catastrophic failure when you least expect it or are least able to repair it

Coaxial Cable Environmental Considerations

- Constant exposure to wind, ice, water, condensation, heat, cold, ultra-violet radiation and lightning strikes
- Flexible jackets of RG-213 and LMR-400 flexible coaxial cables are easily damaged during feedline installation, antenna installation, tower maintenance, wind, ice, UV and lightning
 - never use 9913 air dielectric coax or similar "water hose"
 - never use foam dielectric flexible coaxial cable outdoors
 - except Davis RF Bury-Flex
- Heliax and jacketed CATV hardline are highly resistant to environmental damage and provide 25 years of service
 - If no installation errors are made
 - if you perform annual inspections to detect problems early

UHF Coaxial Cable Connectors

- N and UHF connectors are the most commonly used
 - both have insignificant loss at 50 MHz and below
- High quality silver plated PL-259 connectors provide much more center pin mating force than N connectors
 - eliminates cross-station interference and N connector failures from:
 - unreliable center pin mating force and common pin alignment failures
 - installation errors (e.g., incorrect pin depth, misalignment and pullback)
- Avoid using adapters as much as possible
 - but if necessary use only name-brand silver plated adapters
 - never use nickel plated or "astro-plated" connectors and adapters
 - never use cheap import "no name" adapters and connectors
- Wrench tighten your all of your PL-259 connectors (1/4 turn)

Avoid saving a few dollars on cheap unbranded connectors and adapters

Amphenol 83-1SP PL-259 Connector

www.dxengineering.com/parts/aml-83-1sp

Coaxial Cables83-1SP Connector Installation

www.k3lr.com/engineering/pl259

Connector Waterproofing

Cover your connectors with two 50% overlapped layers of Scotch 130C stretched to 50% of its original width, sticky side facing out

Cover the Scotch 130C with two 50% overlapped layers of Scotch 33+ or Scotch 88

Antenna FeedpointWaterproof and Shakeproof Connections

Coaxial Cables Can Make or Break Your Competitive Performance

- How well you select, install, waterproof, inspect and maintain your coaxial cables and connectors can make or break the competitive performance of your contest station
- Cross-station interference in multi-operator and SO2R stations is often caused by
 - failure to properly tighten your PL-259 coaxial connectors
 - wrench tighten ¼ turn
 - inappropriate or failing outdoor coaxial cables or connectors
 - never use type-N connectors below 50 MHz
 - nickel plated, cheap low quality imported connectors and adapters
 - poor connector installation workmanship
 - failure to perform annual inspections and regular maintenance

Low Loss Coaxial Cables for Single Operator Stations

- Cable loss, proper installation, water proofing and annual inspections are the most important concerns for single operator stations
 - Andrew LDF4-50A 50 ohm Heliax and connectors are commonly available at hamfests and eBay for ~ \$1.00/foot
 - Less than 1 dB of loss on 10 meters for lengths up to 300 feet
 - If you must use flexible coaxial cable on your tower,
 Davis RF Bury-Flex is an acceptable alternative for single operator stations only, at about the same price.
 - never use any other type of foam dielectric flexible coaxial cable
 - Non-flooded coax such as RG-213 and LMR-400 has short service life in the harsh environment on a tower
 - especially on the rotating cable loop above a rotator
 - never direct bury RG-213 or LMR-400 or lay it on wet ground

Low Loss Coaxial Cables for Multi-Op and SO2R Stations

- Andrew LDF4-50A ½ inch Heliax and 3/4 inch CATV cable are ideal choices for lengths up to:
 - 300 feet on 10 meters
 - 400 feet on 20 meters
 - 600 feet on 40 meters
- Eliminate the most common cross-station RFI sources:
 - Heliax avoids RFI caused by dissimilar metals corrosion in aluminum foil and tinned braid shields of Davis RF Bury-Flex cable
 - Avoid signal coupling between single braid shielded RG-213 coaxial cables by not bundled them or running them together in conduits
 - Use the smallest possible number of connectors and adapters
 - use only brand name silver plated UHF connectors and adapters
 - never use nickel plated or cheap no-name connectors and adapters

Low Loss Coaxial Cables for Multi-tower Stations

- Multi-tower stations often use coax cables longer than 300 ft
- Andrew LDF5-50A 7/8 inch Heliax is an ideal choice for lengths up to:
 - 500 feet on 10 meters
 - 600 feet on 15 meters
 - 700 feet on 20 meters
 - 1000 feet on 40 meters
- Be cautious of the wind load and weight (including ice load) of multiple large diameter coaxial cables fastened to light duty towers such as Rohn 25 and 45

Coaxial Cable Installation on your Tower

- Wind, ice, water, condensation, heat, cold, ultra-violet radiation and lightning strikes are important concerns
 - If any of these conditions are unusually severe in your environment, implement additional protective measures
- Heliax and CATV hardline must be firmly fastened to the tower at least every five feet to protect them from wind and ice damage
- Flexible coaxial cables (e.g. RG-213) should be firmly attached to the tower at least every two or three feet to protect them from wind and ice damage
- Use electrical tape to protect plastic tie-wraps from ultraviolet radiation

Coaxial Cable Interface to the Top of your Tower

- Coaxial cables must be bonded ("grounded") to the top of your tower
 - prevents the coaxial cable jacket from developing pinholes caused by cable-to-tower arcing during lightning strikes

- Connectors must be carefully placed and waterproofed
 - so that water cannot not flow down the outside of your coaxial cables then directly into your connectors

Coaxial Cable Interface to the Bottom of your Tower

- Tower mounted coaxial cables must be bonded ("grounded") to your tower base
 - prevents the coaxial cable jacket from developing pinholes caused by cable-to-tower arcing during lightning strikes
- An effective ground system must be connected to your tower base to strip lightning currents from your cables before they flow down the cable shields into your station
 - A minimum of three 8-foot galvanized steel ground rods
 - spaced at eight feet from each other and from the tower base
- Connectors must be carefully placed and waterproofed
 - so that water cannot not flow down the outside of the coaxial cables then directly into your connectors

Buried Coaxial Cables

Direct Burial

- use only coaxial cable that is rated for direct burial
 - Andrew Heliax, jacketed CATV cable or Davis RF Bury-Flex
- PVC jacketed coaxial cable should never be direct buried or laid on wet ground

Conduit

- use oversized conduit with plenty of room for cable pulling
- use sweeps, not sharp right angle connectors
- use appropriate methods to drain moisture from the conduit
- prevent water and vermin entry into conduit entrances
- use only Heliax cables in multi-op and SO2R stations
 - bundled single shielded coax can cause cross-station RFI

Antenna Rotation Coax

- Your antenna rotation coaxial cable is exposed to the most extreme environmental conditions in your station
- Carefully prevent the coax from rubbing or pulling against the tower or any other objects that could damage it when rotating the antenna or when blown by strong wind
 - rotators with more than 360 degrees of rotation make this extremely difficult to achieve
- Use only new, name brand, high quality RG-213
 - 95% shielded, stranded center conductor, solid dielectric, black UV-resistant jacket
- Replace your coaxial cable when needed
 - whenever you discover abrasion, damage or degradation during your annual inspections
 - replace at least once every ten years

Single Point Ground at the Cable Entry into your Station

- Your station cable entry interface should establish a single point ground as close as possible to the outside wall of your building
 - a minimum of three 8-foot ground rods near your cable entry
 - spaced at least eight feet from each other in undisturbed soil
- Your single point ground strips lightning currents off of the coaxial cable shields before they enter your station
- Lightning protectors should be installed at your station single point ground
 - never install lightning protectors at your tower base

Coaxial Cables Inside your Station

- RG-213 is much more practical than Heliax cable
 - RG-223 and RG-400 are excellent choices for small diameter coax
- Eliminating cable, connector and adapter related cross-station interference in SO2R and multi-operator stations
 - never bundle single shielded coaxial cables such as RG-213
 - avoids cross-cable signal coupling between single shield coaxial cables
 - use double shielded coax if you must bundle your coaxial cables
 - use only PL-259 connectors and never N connectors for much better connector reliability and higher center pin contact pressure
 - use only high quality Amphenol 83-1SP silver plated PL-259s
 - use K3LR's excellent PL-259 installation technique
 - avoid nickel plated and cheap low quality imported adapters
 - high quality silver plated adapters are available from DX Engineering

Annual Coaxial Cable Inspections

- Inspect all indoor and outdoor coaxial cables, connectors and waterproofing for evidence of damage, cuts, cracks, moisture intrusion and improper installation
 - antenna feed point connection (wear and water intrusion)
 - antenna rotation coaxial cable (chaffing and wear)
 - tower top connectors and bonding to tower
 - tower base connectors and bonding to tower
 - all coaxial cable connectors and adapters in your station
 - all SO-239 chassis connectors on your station equipment
- If in doubt, remove the connector for detailed inspection
- Verify that all indoor and outdoor PL-259 connectors are wrench tighted ¼ turn

Coaxial Cable Measurements Inside Your Shack

- Make a record of the following measurements at the ham shack end of every coaxial cable:
 - VSWR across the entire band(s)
 - center conductor to shield resistance
 - typically either a fraction of one ohm or many megohms
 - TDR and/or VNA plots
 - serious station builders should own (and use!) a TDR and a VNA
- Well before your next competitive contest, verify that all measurements are unchanged and not erratic
 - any change (better or worse) requires detailed investigation
- Use a digital wattmeter in your station to allow you to quickly detect and diagnose abnormal operation

