How to Improve Your Transmitting Antennas for Low Solar Activity

- Vertically polarized 160 meter antennas
- Horizontally polarized 80-10 meter antennas
- Single Yagi and single tower stations
- Stacked Yagis
- Quantitative performance evaluation

Five Years of Very Low Solar Activity

Solar activity should start to increase by 2020

Cycle 25

Transmitting Antenna Elevation Angles Needed for Low Solar Activity

- 10 meters primarily open to the south
 - almost all DX propagation is at elevation angles below 10 degrees
 - many marginal DX paths require elevation angles well below 5 degrees
- 15 meters much shorter openings to Europe
 - almost all DX propagation is at elevation angles below 10 degrees
 - many marginal DX paths require elevation angles well below 5 degrees
- 20 meters the most crowded daytime DX band
 - almost all DX propagation is at elevation angles below 15 degrees
 - most marginal DX paths require elevation angles well below 10 degrees
- 40 meters the most crowded afternoon and night DX band
 - almost a 24 hour DX band especially during CQWW CW in late November
 - wide variety of elevation angles are needed from 5 to 25 degrees
- 80 meters a very important DX band for the next five years
 - very efficient antennas for angles below 10 degrees to 30+ degrees
- 160 meters an excellent DX band for the next five years
 - vertical antennas are the only efficient 160M DX transmitting antennas

6 dB of "Free" Ground Gain

- Vertically polarized antennas can achieve 6 dB ground gain only over highly conductive soil such as a salt marsh
- A horizontally polarized dipole, Yagi or quad easily provides 6 dB of valuable ground gain
 - but only if you install it an appropriate height
- Higher antennas are needed during low solar activity
- Stacked HF Yagis achieve higher gain mainly by suppressing undesired high angle radiation and redistributing the power into the main low angle beam
 - stacked Yagis must be installed at appropriate heights to achieve the expected results

Vertical Polarization for 160 Meters

almost always provides better DX performance than any horizontally polarized antenna

- Vertical, inverted-L, T, and umbrella transmitting antennas almost always outperform horizontally polarized antennas at distances beyond 1500 miles
- Nearby tall towers and antennas can significantly degrade the performance of vertical antennas
 - antenna pattern degradation
 - losses
- Efficient radial systems are essential to achieving the full performance potential of vertical transmitting antennas

Horizontal Polarization for 80 Meters easily provides 6 dB of "free" ground gain

- Horizontal dipole or inverted-V dipole 50-70 feet high
 - superb Sweepstakes and Field Day antenna
 - a good DX antenna for distances up to about 5000 miles
- Horizontal dipole or inverted-V dipole at 70 feet or higher
 - outperforms a single 65 foot vertical installed over all but the most conductive soils such as a salt marsh
- Use a vertically polarized antenna if you cannot install a dipole or inverted-V dipole at least 70 feet high
 - 65 foot vertical, inverted-L, T or umbrella with at least 30-60 radials
 - or a corner fed delta loop or inverted-U
- Four-square vertical array
 - with at least sixty 70 foot shallow buried radials per vertical
 - very competitive with high horizontally polarized arrays

High Performance Transmitting Antennas for 160 Meter DX

- 125 foot vertical: the gold standard 160 meter antenna
 - well spaced from all nearby tall towers and antennas
 - at least 140 feet from towers over 80 feet tall supporting large HF Yagis
 - optimum performance with spacing much greater than 140 feet
 - Install at least 30-60 shallow buried 125 foot radials
 - or at least two (preferably four or more) elevated 125 foot radials
 - but only if 30-60 shallow buried 125 foot radials are not possible
 - or a K2AV folded counterpoise (a counterpoise for small lots)
- Inverted-L, T and umbrella antennas are good alternatives
 - 50 feet or higher (as short as 35 feet with reduced performance)
 - supported by a tower, mast or trees
- Vertically polarized corner fed delta loop

High Performance Transmitting Antennas for 80 Meter DX

- Horizontal dipole at least 70-100 feet high
 - higher is better
- 65 foot vertical
 - install at least 30-60 shallow buried 65 foot radials
 - or at least two (but preferably four or more) elevated 65 foot radials
 - only if buried radials are impossible
 - at least 70 feet from towers over 40 feet tall supporting a Yagi antenna
 - optimum performance with much more than 70 foot spacing
- Inverted-L, T and umbrella verticals are good alternatives
 - as little as 25 feet tall supported by a tower or trees
 - install at least 30-60 shallow buried 65 foot radials
 - or elevated radials
 - or a reduced size counterpoise
- Or a vertically polarized corner fed delta loop

4-Square Vertical Array

an excellent high performance alternative to a very high 80 meter horizontal antenna

- A four square vertical array is very competitive with high horizontally polarized Yagis and quads
 - its also an excellent receiving antenna
- install at least 70 feet from all other towers
 - much more than 70 feet will significantly improve its performance
- at least 30-60 shallow buried 70 foot radials under each vertical

Comtek 4-Square Controller

www.dxengineering.com/search/brand/comtek

High Performance 40M Antennas

- High horizontal dipole at least 70 feet high
 - 13-45 degree elevation beam pattern at -3 dB points
 - otherwise use a four-square vertical array with 30-60 radials
- Higher gain: 2 element Yagi at 70-100 feet high
 - 10-30 degree elevation beam pattern at -3 dB points
 - significant improvement over a simple horizontal dipole for DX
 - a Cushcraft XM-240 at 100 feet high is very cost effective
- Highest gain: full size 3 element Yagi at 140+ feet high
 - 7-20 degree elevation beam pattern at -3 dB points
 - but don't underestimate the high cost and complexity of the effort!

4-Square Vertical Array for 40 Meters

- A 4-square vertical array is good alternative to a Yagi if you cannot install it at least 70 feet high
 - install a 4-square at least 40 feet from all towers
 - more spacing will significantly improve its performance
 - at least 30 to 60 slightly buried 35 foot radials under each vertical
- A 4-square is an excellent receiving antenna

High Performance 20M Antennas

- A horizontal Yagi or quad is always the best choice
 - if you can install your antenna at 35 feet high or higher
 - 13-45 degree elevation beam pattern at -3 dB points
- Moderate gain: small tri-band Yagi, hex-beam or quad
 - a small Yagi at 50 to 70 feet high will produce good DX results
 - 10-30 degree elevation beam pattern at -3 dB points
- High gain: full size tri-band Yagi, small monoband Yagi or quad
 - 70 to 100 feet high
 - 7-20 degree elevation beam pattern at -3 dB points
- Highest gain: two stacked monoband Yagis
 - 100-140 foot tower (170 to 200 foot tower for three stacked Yagis)
 - 3-15 degree elevation beam pattern at -3 dB points
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 5 Element 20 Meter Yagis 48 Foot Booms 50 and 100 Feet High

The Array Solutions Stack Match

High Performance 15M Antennas

- A horizontal Yagi or quad is always the best choice
 - if you can install your antenna at 25 feet high or higher
 - 13-45 degree elevation beam pattern at -3 dB points
- Moderate gain: small tri-bander Yagi, hex-beam or quad
 - a small Yagi at 50 feet high will produce good DX results
 - 7-20 degree elevation beam pattern at -3 dB points
- High gain: full size tri-band Yagi, small monoband Yagi or quad
 - 70 to 100 feet high
 - 5-15 degree elevation beam pattern at -3 dB points
- Highest gain: two stacked monoband Yagis
 - 70-90 foot tower (120 to 140 foot tower for three stacked Yagis)
 - 4-15 degree elevation beam pattern at -3 dB points
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 6 Element 15 Meter Yagis 48 Foot Booms 47 and 94 Feet High

High Performance 10M Antennas

- A horizontal Yagi or quad is always the best choice
 - if you can install your antenna at 20 feet high or higher
 - 13-45 degree elevation beam pattern at -3 dB points
- Moderate gain: small tri-bander Yagi, hex-beam or quad
 - a small Yagi at 40 feet high will produce good DX results
 - 7-20 degree elevation beam pattern at -3 dB points
- High gain: full size tri-band Yagi, small monoband Yagi or quad
 - 50 to 70 feet high
 - 5-15 degree elevation beam pattern at -3 dB points
- Highest gain: two stacked monoband Yagis
 - 60-70 foot tower (90 to 100 foot tower for three stacked Yagis)
 - 4-15 degree elevation beam pattern at -3 dB points
 - stack switching (a "stackmatch") provides high payoff at low cost

Stacked 6 Element 10 Meter Yagis 36 Foot Booms 35 and 70 Feet High

Competitive One Tower Antenna Systems

- 50-70 foot tower and a small rotator (e.g., HyGain Ham-IV)
 - small tri-band Yagi, Hex-beam or quad
 - 40 and 80 meter dipoles and a 160 meter inverted-L
- 70-90 foot tower and a medium rotator (e.g. HyGain T2X)
 - Cushcraft XM-240 two element 40 meter Yagi
 - large tri-band Yagi such as the DX Engineering Skyhawk
 - 80 meter dipole and a 160 meter inverted-L
- 100-140+ foot tower and a large rotator (e.g., M2 Orion)
 - Cushcraft XM-240 two element 40 meter Yagi
 - monoband Yagis such as the Hy-Gain LJ series on ring rotators
 - 80 meter dipole and a 160 meter inverted-L

Quantitative Performance Evaluation

Use the WSPR network to compare your antenna performance

<u>Date</u>	<u>Call</u>	Frequency	<u>SNR</u>	<u>by</u>	<u>mi</u>
2017-03-30 02:22	W3LPL	3.594127	-18	LX1DQ	3944
2017-03-30 02:22	W3LPL	3.594134	-26	PI9ESA	3808
2017-03-30 02:22	W3LPL	3.594131	-18	EA1FAQ	3685
2017-03-30 02:22	W3LPL	3.594127	-19	DK6UG	4030
2017-03-30 02:22	W3LPL	3.594128	-28	ON7DS	3833
2017-03-30 02:22	W3LPL	3.594133	-22	DF2JP	3915
2017-03-30 02:22	W3LPL	3.594132	-16	ON5KQ	3792
2017-03-30 02:22	W3LPL	3.594145	-23	DL/PA0EHG	3914
2017-03-30 02:22	W3LPL	3.594142	-27	DL1GCD	4046
2017-03-30 02:22	W3LPL	3.594148	-28	DL1HI	4034
2017-03-30 02:22	W3LPL	3.594128	-24	DK8FT	4193
2017-03-30 02:22	W3LPL	3.594129	-25	DL9GCW	4138
2017-03-30 02:22	W3LPL	3.594129	-24	G0KTN	3551
2017-03-30 02:22	W3LPL	3.594128	-13	GX3WSC	3645
2017-03-30 02:22	W3LPL	3.594133	-19	ON7KO	3822
2017-03-30 02:22	W3LPL	3.594121	-25	HB9UQF	4089
2017-03-30 02:22	W3LPL	3.594167	-15	F5RRS	4057
2017-03-30 02:22	W3LPL	3.594129	-22	G0BLB	3544
2017-03-30 02:22	W3LPL	3.594129	-19	F1VMV	4045

