Easy to Build Low Band Receiving Antennas for Small and Large Lots

- Small antennas
- High performance antennas
- Quantitative performance evaluation

Frank Donovan W3LPL • CTU • CONTEST UNIVERSITY

Why Receiving Antennas?

- Much better performance than most transmitting antennas
 - much lower cost
 - greatly reduced footprint
 - greatly reduced height (7 to 25 feet)
 - good directivity on as little as 650 to 2500 square feet
 - excellent directivity on less than an 1/4 acre
 - directivity equivalent to a 5 element Yagi on less than 3/4 acre
 - greatly reduced mutual coupling between individual verticals
 - greatly reduced need for efficient matching and extensive radial systems
- High performance arrays perform equivalent to a 5 element Yagi!
- Combining two antennas with a variable phase controller
 - steerable nulls
 - optimizes the front-to-back ratio of phased arrays of Beverages and verticals
- Diversity reception with dual phase locked receivers

。 GTU。 CONTEST UNIVERSITY All receiving antennas dimensions are for 160 meters - simply scale them to 80 meters

Receiving Directivity Factor (RDF)

proven measure of receiving antenna performance

- Compares forward gain <u>at the desired azimuth and elevation</u> angle to average gain <u>over the entire hemisphere</u>
 - EZNEC computes antenna RDF
- Assumes noise is equally distributed over the entire hemisphere
 - an invalid assumption for suburban and especially urban locations where noise is often concentrated on the horizon
- Assumes that RFI is more then 1000 feet away, in the far field of the antenna
 - where the antenna pattern of large antennas is fully formed, and
 - RFI sources look more like a point sources

https://www.w8ji.com/receiving

Re-radiation from antennas, towers and power lines within about 1000 feet can degrade your actual RDF <u>especially for high RDF arrays</u>

Small Receiving Antennas 4 - 11 dB RDF

- 4 dB: Bidirectional 8 foot diameter "magnetic" loop close to the ground
- 5 dB: Single vertical antenna (short vertical or ¼ wavelength vertical)
- 6 dB: 225 foot Beverage on Ground (BOG)
- 6 dB: 250 to 400 foot Beverage about 7 feet high
- 7 dB: Unidirectional terminated small loop
 - flag, pennant, EWE, VE3DO
- 8 dB: Close spaced arrays of two small terminated loops
 - K9AY Array
 - Shared Apex Loop Array
- 8 dB: Pair of 250 to 400 foot staggered Beverages about 7 feet high
- 9 dB: Two phased short verticals with 60 to 80 foot spacing
- 9 dB: Triangle array of phased short verticals with 60 to 80 foot spacing
- 11 dB: Vertical Waller Flag

0 CTT 0

Small antennas are the best RFI reduction antennas when RFI sources are within about 1000 feet

High Performance Receiving Antennas 10 - 14 dB RDF

800 ft x 330 ft

- 10 dB: 500 to 600 foot Beverage about 7 feet high
- 11 dB: Two or three close spaced 500 to 600 foot Beverages, staggered 125 feet
- 11 dB: Vertical Waller Flag array
- 12 dB: 4 square array of active or passive short verticals
 80 x 80 ft
- 12 dB: 3 element YCCC tri-band array of short active verticals 120 ft long
- 12 dB: 5 element YCCC tri-band array of short active verticals 84 x 84 ft
- 12 dB: 9-circle YCCC tri-band array of short active verticals 120 ft diameter
- 12 dB: Horizontal Waller Flag: 2 phased horizontal loops at least 100 ft high
- 13 dB: BSEF array of 4 short verticals switchable in two directions 350 ft x 65 ft
- 13 dB: 8-circle array of short verticals with 106° phasing
 200 ft diameter
- 13 dB: 8-circle BSEF array of short passive verticals 350 ft diameter + radials
- 14 dB: Four broadside/end-fire 800 foot Beverages

Large antennas are less effective than small antennas at suppressing local RFI sources within a few thousand feet

Small Single Loop Antennas 4 - 7 dB RDF 120 - 150° 3 dB Beamwidth

- 8 foot diameter bidirectional "magnetic" loop 4 dB RDF
 - *bi-directional* 150 degree beamwidth
 - install close to the ground to suppress horizontally polarized RFI
 - a specialized antenna for steering a very deep null onto a single ground wave propagated RFI source
 - poor sensitivity for DX compared to larger antennas
- Unidirectional terminated small loops
 - flag
 - pennant
 - EWE
 - K9AY

0 GTTO 0

- VE3DO
- Mechanically rotatable unidirectional terminated small loops
 - rotatable flag

Small antennas are the best RFI reduction antenna when RFI sources are within 1000 feet

6 - 7 dB RDF

Arrays of Two Small Loops

Arrays of Two Small Loops 8 - 11 dB RDF 80 - 120° 3 dB Beamwidth

- Electrically steerable compact arrays of two small loops
 - Two switchable K9AY loops
 - Shared Apex Loop Array
- 350 foot broadside spaced pair of small loops 9
- 9 10 dB RDF

8 - 9 dB RDF

8 - 9 dB RDF

- pennant
- EWE
- K9AY

0 CTT 0

- VE3DO
- Mechanically rotatable array of two small end-fire loops
 - Vertical Waller Flag

11 dB RDF

Small antennas are the best RFI reduction antenna when RFI sources are within a few thousand feet

BOGs and BOG Arrays 6 to 8 dB RDF 60 - 90° 3 dB Beamwidth

• BOG

6 dB RDF 90° beamwidth

- 225 foot wire laid just above <u>but not on</u> the surface of the ground
- Switchable bi-directional BOG 6 dB RDF 90° beamwidth
 - 225 foot coaxial cable laid just above *but not on* the surface of the ground
- Close spaced staggered BOGs 7 dB RDF 90° beamwidth
 - two or three close spaced BOGs with 125 foot end fire spacing
 - significantly improves front-to-back ratio especially if a variable phase controller is used
- Two wide spaced BOGs 8 dB RDF 60° beamwidth
 - 350-400 foot broadside spacing

BOGs are low sensitivity antennas requiring significant suppression of common mode signals from the coaxial cable feed line

Beverages and Beverage Arrays 6 - 14 dB RDF 45 - 120° 3 dB Beamwidth

• 250 to 400 foot Beverage

6 dB RDF 90 - 120° 3 dB beamwidth

- approximately 7 feet high
- single wire or two wire bi-directional
- 500 to 900 foot Beverage 8 10 dB RDF 50 70° 3 dB beamwidth
 - approximately 7 feet high
 - single wire or two wire bi-directional
- Staggered Beverage arrays
 11 dB RDF
 50 70° 3 dB beamwidth
 - two or three Beverages with 125 foot end-fire spacing
 - significantly improved front-to-back ratio especially with a variable phase controller
- Broadside Beverage arrays 12-14 dB RDF 45 60° 3 dB beamwidth
 - two Beverages with 350-400 foot broadside spacing, or
 - four Beverages with 125 foot end fire spacing and 350-400 foot broadside spacing

O ICOM

1300 Foot Beverage installed by Paul Godley 2ZE on a beach in Androssan, Scotland During the successful 1921 Trans-Atlantic Tests

Beverages were all but forgotten by hams for 45 years until K1PBW re-introduced them to 160 meter DXers in 1967

Arrays of Short Verticals 9 - 14 dB RDF 50-135° 3 dB Beamwidth

- Active high impedance 20 foot verticals
 - capable of multi-band operation
 - requires a high input impedance amplifier at the base of each vertical

----- or -----

- Passive low impedance 25 foot verticals
 - mono-band antenna only
 - easy to troubleshoot and repair low parts count very reliable
 - eight 70 foot or sixteen 35 foot radials <u>at the base of each vertical</u>
 - stabilizes the feed point impedance during all weather conditions
 - decouples the coax shield
 - four 25 foot umbrella wires
 - reduces the required height to 25 feet
 - increases the array bandwidth
 - *if necessary*, 35 foot verticals with no umbrella wires can be substituted

Any monoband array of phased short verticals can use either high or low impedance verticals

Small Loop Antenna

Eight Foot Diameter "Magnetic" Loop

- Excellent for nulling a <u>single</u> nearby RFI source
 - RFI to be nulled must be vertically polarized and received via ground wave
- Superb for precisely locating RFI very small loops have deeper nulls
- Bi-directional figure-8 pattern 150° 3 dB beamwidth
 - must install close to the ground to suppress horizontally polarized signals
- Very deep nulls (only about 2° wide) off both <u>sides</u> of the loop
 - mechanically rotate the loop until the single local RFI source is nulled
 - the null is not as deep for skywave propagated signals
- Small loop antennas produce very low signal levels
 - requires a high gain, low noise figure preamplifier
 - a poor low sensitivity DX receiving antenna
- All attached cables must be choked for common mode signals
 - install common mode chokes on the coaxial feedline and preamp power cable
 - bury cables about 12 inches deep for optimum null depth
- Avoid re-radiated signals from nearby antennas and power lines
 - locate the antenna as far as possible from other antennas and power lines

。 GTU。 CONTEST UNIVERSITY

The "Magnetic" Loop is a specialized antenna

Small Loop Antenna 4 dB RDF 150° 3 dB beamwidth

Inexpensive and very easy to build and use 8 foot diameter - good compromise for null depth and sensitivity Very deep 2° beamwidth broadside nulls for local RFI suppression Very broad 150° figure-8 bidirectional 3 dB beamwidth Poor sensitivity for DX

www.seed-solutions.com/gregordy/ Amateur%20Radio/Experimentation/160loop.htm

Electrically Steerable Loop Arrays

- Two K9AY loops
 - switchable in four directions
 - footprint is only 25 x 25 feet and 25 feet tall
 - 120° 3 dB beamwidth
 - 7 dB RDF
- Shared Apex Loop Array
 - switchable in eight directions
 - footprint is only 50 x 50 feet and 25 feet tall
 - 75° 3 dB beamwidth
 - 8 dB RDF

0 CTT 0

- All small loops produce very low signal levels
 - a high gain, low noise figure preamplifier is essential
 - requires very careful attention to choking unwanted common mode signals
 - choke the coaxial cable feed line and filter the control cable and power cable
 - bury the cables about 12 inches deep for best unwanted signal suppression
- Avoid re-radiated signals from nearby antennas, towers and power lines
 - locate the antenna as far as possible from antennas, towers and power lines

Two K9AY Loops 7 dB RDF in only 625 square feet

very small 25 x 25 foot square x 25 feet high switchable in four directions 120° 3 dB beamwidth

www.arraysolutions.com/antennas/as-ayl-4-ant

Shared Apex Loop Array 8 dB RDF in only 2500 square feet

50 x 50 foot square x 25 feet high switchable in eight directions 75° 3 dB beamwidth

www.arraysolutions.com/antennas/as-sal-30

Waller Flag Array – Vertical or Horizontal 11 dB RDF in only 30 feet of length

Two small terminated loops with end-fire phasing For most locations: 14 feet tall and 30 feet long For quiet locations: 20 feet tall and 50 feet long At least 100 feet high for horizontal polarization 80° 3 dB beamwidth

http://wwrof.org/wp-content/uploads/2016/03/WWROF-WEBNAIR-RX-Antennas-for-a-Small-Lot-.pdf

The simplest and most reliable high performance receiving antenna

。 GTU。 CONTEST UNIVERSITY

http://www.w8ji.com/beverages.htm

Single Wire Beverage

The simplest and most reliable high performance receiving antenna

250 to 400 feet long 500 to 700 feet long 10 - 12 dB RDF 800 to 900 feet long

4 - 6 dB RDF 12-13 dB RDF

100° 3 dB beamwidth 70° 3 dB beamwidth 60° 3 dB beamwidth

Beverage Simulations - 3 feet high, avg gnd, 1.85 MHz, #18 copper wire, teflon ins 8 mils thick (data at best F/B plotted)

Beverage on (or near) Ground 6 - 8 dB RDF with only 225 feet of length

a good choice when stealth is important

signal levels are *much stronger* if the wire is elevated just a few inches only about 225 feet long -- longer lengths *significantly degrade* performance 70 - 100° 3 dB beamwidth

https://vimeo.com/199235390

Two Wire Bi-directional Beverage - 1921 Switchable in two directions with one feed line deep steerable rear null if both feed lines feed a variable phase controller H. H. BEVERAGE. RADIORECEIVING SYSTEM. APPLICATION FUED MAY 3. 1,434,984. Patented Nov. 7, 1922. Inventor: Harold H. Beverage, by Alters His Attorney. o (%) ហើ o www.w0btu.com/Beverage_antennas.html CONTEST

UNIVERSIT

Radiation Pattern of a 600 Foot Beverage

UNIVERSITY

Staggered Beverage Array - 1927 11 dB RDF on one acre

two or three close spaced, 500 to 600 foot staggered Beverages or two or three close spaced 225 foot BOGs -- 7 dB RDF enhanced front-to-back ratio compared to a single Beverage or BOG the deep rear null can be steered by a variable phase controller

http://ncjweb.com/features/sepoct11feat.pdf

Phased High Impedance Verticals Two or More 20 Foot Verticals

- No radials
- No umbrella wires
- Dual band operation with compromise 65 foot element spacing
- 80 foot element spacing for improved 160 meter performance
 - closer spacing is possible by using a variable phase controller
- High input impedance amplifier at the feed point of <u>each</u> vertical
 - stray capacitance to nearby trees and other objects, at the feed point of each vertical and at the input to each amplifier must be as low as possible
- Switchable in multiple directions
- Verticals must not be installed within ten feet of nearby objects
 - Avoid nearby trees or any conductive or partially conductive structure
- Avoid re-radiated signals from nearby antennas and power lines
 - locate the antenna as far as possible from antennas, towers and power lines

www.hizantennas.com

Radiation Pattern of a Two Element Array of 20 Foot Verticals

Electrically Steerable 4-Square Vertical Array 12 dB RDF on less than ¼ acre

four <u>high impedance</u> 20 foot verticals no radials or umbrella wires 80 x 80 foot square x 20 feet high high input impedance amplifier at the base of <u>each</u> vertical switchable in four directions 100° 3 dB beamwidth

www.dxengineering.com/parts/hiz-4-lv2-80

Radiation Pattern of a 4-Square Array of 20 Foot Verticals

Electrically Steerable 8-Circle Vertical Array 13.5 dB RDF on only ³/₄ acre

eight <u>high impedance</u> 20 foot verticals no radials and no umbrella wires requires a high input impedance amplifier at the base of <u>each</u> vertical only 200 foot diameter array switchable in eight directions with 106^o phasing 50^o 3 dB beamwidth, equivalent to a 5 element Yagi

www.hizantennas.com/8_element_arrays.htm

Radiation Pattern of a 200 Foot Diameter 8-Circle Array

YCCC Triband Receiving Array 12 dB RDF on only 1/4 acre

- 3, 5 and 9 element configurations with identical performance
 - switchable in 180°, 90° and 45° steps respectively
 - 80° 3 dB beamwidth
 - slightly wider beamwidth and slightly lower RDF on 80 and 40 meters
- 120 foot diameter array
- No radials
- No umbrella wires
- High impedance amplifier at the feed point of each 20 foot vertical
- A common mode choke must be attached to each feedline where it connects to the controller
- Install at least 10 feet from nearby trees and metallic structures
- Avoid re-radiation from nearby towers, antennas and power lines
 - locate the antenna as far as possible from other antennas and power lines

static.dxengineering.com/global/images/ instructions/dxe-yccc-3inline.pdf

Phased Low Impedance Verticals Two or More 25 Foot Monoband Umbrella Verticals

- Short radials are required at the base of each vertical
 - eight 70 foot radials, sixteen 35 foot radials or chicken wire
 - randomly laid on the ground or shallow buried, symmetry is not important
- Four 25 foot umbrella wires attached to the top of each vertical
 - umbrella wires reduce antenna height and improve array bandwidth
 - *if necessary*, use 35 foot verticals with no umbrella wires
- As little a 65 foot element spacing
 - but more difficult to achieve stable, repeatable performance with small spacing
- Amplifiers not needed at the base of each vertical higher reliability
- Switchable in multiple directions
- Very easy and low cost to homebrew your own antenna
 - Iarge diameter arrays are very tolerant of moderate amplitude and phase errors
- Low impedance verticals are tolerant of nearby trees and buildings
- Avoid re-radiated signals from nearby towers, antennas and power lines
 - Iocate the antenna as far as possible from other antennas and power lines

Excellent Performance and High Reliability

Electrically Steerable 4-Square Vertical Array 12 dB RDF on ¼ acre

four <u>low impedance</u> 25 foot umbrella verticals four 25 foot umbrella wires attached to the top of each vertical eight 70 foot or sixteen 35 foot radials per vertical 65 x 65 foot square footprint plus additional space for radials switchable in four directions easy and inexpensive to build 100° 3 dB beamwidth

Electrically Steerable 8-Circle Vertical Array 13.5 dB RDF on four acres

eight <u>low impedance</u> 25 foot umbrella verticals four 25 foot umbrella wires installed on each vertical eight 70 foot or sixteen 35 foot radials installed under each vertical 350 foot diameter with 1/4 wavelength spacing plus space for radials or only 200 foot diameter with a Hi-Z 106 degree phasing controller switchable in eight directions Very easy and inexpensive to build

50° 3 dB beamwidth, equivalent to a 5 element Yagi

construction details: http://www.w5zn.org

Radiation Pattern of a 350 Foot Diameter 8-Circle Array

Four phased elements with 115 degree phasing

Quantitative Performance Evaluation Using K1JT's WSJT-X

Use two instances of WSPR or FT-8 to compare the performance of two receiving antennas

· CTT ·

CONTEST UNIVERSITY

Receiving Antenna Variable Phasing Controller DX Engineering NCC-2

Combines the inputs from two antennas

- creates a directional pattern with steerable deep nulls
- optimizes the performance of phased Beverages and phased verticals
- very well engineered and exceptionally easy to use

www.dxengineering.com/parts/dxe-ncc-2

Phase Synchronous Diversity Reception

two widely spaced antennas (500 to 1000+ feet) feeding two identical high performance phase locked receivers

Elecraft K3s transceiver with KRX3 sub-receiver

