CTU 2019 Presents

Taking Digital Contesting to the Limit

Ed Muns, WOYK

• CTU • CONTEST UNIVERSITY

Taking Digital Contesting ... to the Limit

- 1st session: "Digital Contesting is Fun!"
- Receiver Configuration
- Call Sign Stacking
- Multiple Decoders
- SO2V, SO2R-SOnR
- AFSK vs. FSK
- FSK Bit Timing
- RTTY Transmit Bandwidth
- FT8 Future

Receiver Configuration AGC; headphone monitoring

- Turn off AGC
 - or, at least minimize it, e.g., AGC=Slow
 - Fast AGC increases error rate in modern software decoders
- Minimize headphone monitoring fatigue
 - Use minimum discernible headphone volume
 - Only need to know start/stop of signal
 - Low Tones, e.g., 915/1085
 - Possible TX harmonics with AFSK

Receiver Configuration

IF filtering

- Narrow IF filters (Roofing & DSP)
 - 500 Hz normal
 - 250 Hz extreme QRM only
 - Tone filters don't use!
 - Icom Twin Peak Filter
 - K3s Dual-Tone Filter

Receiver Configuration

decoder audio level

- Decoder audio level
 - Band noise 5% of fullscale
 - Maximum dynamic range
 - Weak signal decode
- Note 500 Hz IF filtering
 - Decoder optimum

"Slow Down to Win"

- Sailboat racing analogy:
 - Pinwheel effect at mark-rounding
- Let pile-up continue 1-3 seconds after getting first call sign
 - Increase chance for another call sign or two
 - Increase chance for QSO-phase-skip
- Apply same tactic for tail-enders ... pause ½-second before sending TU/CQ message

Call Sign Stacking The 4 Phases of a QSO

Normal Run mode flow:

- 1.CQ msg
 - repeat
 - AGN?
- 2.pile-up
- 3. Exchange msg
 - Send fill(s)
- 4.receive his Exchange
 - AGN? or NR? or QTH? or NAME?
- 1.TU/CQ msg (logs QSO)

Normal S&P mode flow:

1.CQ

- 2.<mycall> msg
 - repeat
- 3.receive his Exchange
 - AGN? or NR? or QTH? or NAME?
- 4. Exchange msg
 - send fill(s)
- 1.find next CQ

skip 2 phases

<u>Normal</u>

- 1. WPX P49X P49X CQ, or TU P49X CQ
- 2. K3LR K3LR K5ZD K5ZD
- 3. K3LR 599 2419 2419
- 4. TU 599 842 842

Shortened

- 1. (skip CQ)
- 2. (skip pile-up)
- 3. K3LR TU NW K5ZD 599 2420 2420
- 4. TU 599 1134 1134

<u>Normal</u>

- → 1. WPX P49X P49X CQ, or

 TU P49X CQ
 - 2. K3LR K3LR
 - 3. K3LR 599 2419 2419 K5ZD
- 4. TU 599 842 842

Shortened

- 1. (skip CQ)
- 2. (skip pile-up)
- 3. K3LR TU NW K5ZD 599 2420 2420
- 4. TU 599 1134 1134

- Efficiently work:
 - multiple callers in a pile-up, and
 - tail-enders to a completing QSO
- Calls pushed onto the stack as they arrive
- Message parameter pops call off of the stack into the Entry window
- Eliminates 2 of 4 QSO phases, which doubles short-term rate

- Dominant SC MODEM
- Standalone, or ...
- Contest loggers:
 - N1MM Logger+
 - WriteLog
 - Win-Test
- Introduced June 2000
- Mako Mori, JE3HHT

- Outperforms MMTTY ?
- Uses less CPU cycles
- Contest loggers:
 - N1MM Logger+
 - WriteLog
 - Win-Test
- Introduced late 2012
- David Wicks, G3YYD

- Best accuracy?
- Bayesian statistics
- Standalone, or ...
- Contest loggers:
 - N1MM Logger+ only
- Introduced late 2015
- Alex Shovkoplyas, VE3NEA

hardware MODEM

MMTTY & DXP38

- Parallel decoding
 - Software, e.g., MMTTY
 - Hardware, e.g., DXP38
- Diverse conditions
 - Flutter
 - Multi-path
 - QRM, QRN
 - Weak signals
 - Off-frequency stations

Multiple RTTY Decoders multiple MMTTY profiles

- Parallel decoding
 - same audio stream
 - switching takes too long
- Multiple profile windows
 - Standard —
 - Fluttered signals
 - Fluttered signals (FIR)
 - Multi-path
 - hyper sensitive
 - EU1SA
 - AA6YQ-FIR-512
 - weak signals in QRN

two IF bandwidths

- Narrow IF filtering (main RX)
 - Hardware modem, i.e. DXP38
 - MMTTY profiles:
 - Standard
 - Fluttered signals
 - Fluttered signals (FIR)
 - Multi-path
 - hyper sensitive
 - EU1SA
- Wide IF filtering (sub RX)
 - MMTTY profile:
 - AA6YQ-FIR-512 -
 - Dual Peak Filter
 - "Matched filter"

- VFO-A (main RX)
 - MMTTY Standard profile
 - 2Tone Flutter profile
 - 2Tone Selective profile
 - DXP38
- VFO-B (sub RX)
 - MMTTY Standard profile
 - 2Tone Flutter profile
- 6 decoders
 - A→B

Multiple Decoders Tone choices for monitoring

- Low tones are less fatiguing
 - Use high tones for secondary audio stream(s)
- Low/High tones can be mixed to put two audio streams in one ear:
 - SO2R plus SO2V per radio (4 streams)
 - SOnR (3+ streams)

SO₂V

- 1. [single rcvr] If Assisted and running on VFO-A, then
 - A<>B, click spot, tune, ID station, work station
 - A<>B, resume running

-Toggle as needed

- 2. [dual rcvr] Set up decoder windows on VFO-A and VFO-B
 - Radio must have two true receivers
 - Monitor both frequencies simultaneously with right/left channels of sound card
 - Left-click call from 2nd RTTY window into VFO-B Entry Window
 - Two ways to transmit on VFO-B:
 - I. A<>B, work the mult, A<>B
 - II. SPLIT, work the mult, un-SPLIT, resume running
 - Requires "wire-OR'd" FSK or AFSK and two transmit RTTY windows
 - WriteLog Shared Com Port obviates the wire-OR
 - K3/WriteLog invokes SPLIT when VFO-B call is clicked

SO₂V

Wire-OR FSK/PTT

Serial Signals (K8UT)

FSK/PTT Signals (W0YK)

SO₂V

Serial Signals (K8UT)

Circuitry built into DE9 hood

FSK/PTT Signals (W0YK)

SO2R

- Eliminates SO1R RTTY boredom
- Think beyond run and S&P:
 - Dueling CQs; run on two bands simultaneously
 - S&P on two bands simultaneously, esp. w/Packet
 - SO2V on one or both radios (SO4V!)
- Two networked computers:
 - Eliminates swapping radio-focus
 - Display room for more decoder windows per radio
 - RTTY doesn't require much typing; mini-keyboards
 - 2 x SO2V=SO4V for picking up mults on both run bands
 - Easily extendible to SOnR

No time to watch TV or read spy novels!

SO2R

"M2" configuration

Right-hand Trackball

Left-hand Trackball

Right-sized Keyboards

24/56

SO2R in the NA Sprint maximize TX duty cycle

- Set VFOs at least 10 kHz apart on both radios
- Find a clear spot on one radio and CQ while you tune the other radio for a station to work
- If you don't find a station to work before the CQ finishes, find a clear frequency and duel CQ
- After a QSO, swap VFOs on that radio, search during other transmission, then resume dueling CQ
- Don't waste time trying to work the "couplet" ...
 CQing is OK in Sprint!

SOnR

- Simplify antenna/filter band-decoding:
 - Dedicate a band/antenna to the 3rd (or 4th) radio
- Networked PC/radio simplifies configuration
- RTTY (vs. CW or SSB) easier for operator
 - PC decodes for operator
 - Low tones & high tones allows two radios per ear
 - Classic audio headphone mixer (per ear) provides radio A, radio B or both

SOnR

Multi-Multi configuration

dedicated to 10 meters

AFSK vs. FSK

which is better?

- First and foremost, a "religious belief"
 - Personal preference, enthusiastically advocated!
- Both are equally high quality on the air, if ...
 - They are configured and adjusted properly
- Telegram:
 - AFSK can achieve high quality with any radio
 - FSK minimizes unintended consequences
 - Only K3 has acceptably narrow TX bandwidth

AFSK vs. FSK

comparison

AFSK

- Indirect (tones → Mic input)
- Any SSB radio (esp. legacy)
- SSB (wide) filtering (legacy)
- Dial = sup. car. frequency
- VOX or PTT
- Audio cable (a'la FT8, JT65/9, PSK31)
- Must use high tones

NET (automatic TX tone control)

Less bandwidth (depends on setup)

Easier cabling; NET

· CTT ·

CONTEST

FSK

- Direct (like CW keying)
- "Modern" radios
- RTTY (narrow) filtering
- Dial = Mark frequency
- PTT
- Com port FSK/PTT keying cable
- Can use low tones

Eliminates:

audio level adjust disabling speech proc. erroneous sound keying

Less pitfalls

FSK Bit Timing Issues

- Issues
 - 1. Bit jitter (variation of bit length)
 - 2.45 instead of 45.45 baud(22.22 vs. 22.00 msec/bit)
- Caused by Windows OS:
 - 1. Task Scheduler injects delays between bits
 - 2. API interface limited to sending integer parameters
- Increased receive error rate
 - Adequately loud, but incorrectly printed characters
 - Wasted time on fills

FSK Bit Timing Issues bit generation

- Software FSK
 - Bit transitions generated in a Windows program:
 - MMTTY EXTFSK/EXTFSK64
 - 2Tone FSK
 - WriteLog Rittyrite Software FSK
- Hardware FSK
 - Bit transitions generated outside of Windows:
 - Hardware modem
 - UART on Serial I/O card or USB-Serial adapter
 - Micro-controller: FSKit, TinyFSK, RpiFSK
 - 。ເຊື້າປືSuedo-FSK via AFSK

FSK Bit Timing Issues software FSK

- Bit transitions generated in a Windows program
- Com port signal toggled: TxD, DTR or RTS
- Windows Task Scheduler interrupts bit stream
 - Other programs which need CPU cycles
 - User operations, e.g.:
 - Mouse movements
 - Starting a program
 - Interacting with a program
 - Average deviation close to zero
 - Some instantaneous deviations of a few msec.

FSK Fit Timing Issues software FSK solutions

- High performance PC
 - Reduces, doesn't eliminate, bit jitter
 - Extent of timing variation
 - Frequency of timing variation
 - Minimize the number of other running programs
- Use hardware FSK
 - May have another timing problem
 - 45 instead of 45.45 baud (22.22 vs. 22.00 msec.)

FSK Bit Timing Issues hardware FSK

- Bit transitions generated outside of Windows:
- 5-bit words sent to hardware bit generator
- Some UARTs don't go below 110-600 baud
 - Modern Serial cards and USB-Serial adapters
 - Clock divider optimized for a higher speed range
- UARTs that handle 45.45 baud
 - Windows API integerizes 45.45 baud to 45
 - Bits are 22.22 msec instead of 22.00
 - Minor impact on receive error rate

FSK Bit Timing Issues hardware FSK solutions

- Use another hardware FSK alternative:
 - Hardware MODEM (ST-8000, DXP38, PK232, Kam ..)
 - FSKit by K4DSP (PCBs no longer available)
 - TinyFSK (Mortty kit for \$18)
 - Pseudo-FSK
 - FSK keying circuits driven by AFSK
 - Jitter-free AFSK¹ without the adjustment issues
 - DIY solutions: FLdigi, 2Tone
- Use AFSK

¹ AFSK tone timing uses soundcard clock, independent of windows

 ভিন্নিতা ০

RTTY Transmit Bandwidth unnecessary QRM

- Wasted power
 - Outside receiving decoder bandwidth
 - Suitably narrow TX BW effectively amplifies signal
- Unnecessary QRM
 - Wide 1.5 KW RTTY can QRM 5-10 channels
 - Similar to CW key click problem of the past

Why hurt yourself AND QRM close-by stations?

AFSK

MMTTY - AFSK

- No filtering
- Flex 6000 @ 60 W

MMTTY - AFSK

- Default 48-tap TX BPF
- Flex 6000 @ 60 W

AFSK

MMTTY - AFSK

- Default 48-tap TX BPF
- Flex 6000 @ 60 W

MMTTY - AFSK

- 512-tap TX BPF
- Flex 6000 @ 60 W

AFSK

MMTTY - AFSK

- 512-tap TX BPF
- Flex 6000 @ 60 W

2Tone - AFSK

- Default "AM" setting
- Flex 6000 @ 60 W

AFSK

MMTTY - AFSK

- Unfiltered
- Flex 6000 @ 60 W

2Tone - DOOK

- Default "AM" setting
- Flex 6000 @ 60 W

AFSK

2Tone - AFSK

- 512-tap TX BPF
- Flex 6000 @ 60 W

2Tone - DOOK

- Default "AM" setting
- Flex 6000 @ 60 W

RTTY Transmit Bandwidth PA IMD impact on AFSK bandwidth

MMTTY - AFSK

- 512 Tap TX BPF
- K3 @ 1 mW

MMTTY - AFSK

- 512 Tap TX BPF
- K3 @ 100 watts

RTTY Transmit Bandwidth MMTTY AFSK filter vs. K3 AFSK filter

MMTTY - AFSK

- 512 Tap TX BPF
- K3 @ 100 watts

MMTTY - AFSK

- No MMTTY filter
- K3 AFSK filter
- K3 @ 100 watts

· CTT

- Old K3 FSK bandwidth
 - No waveshaping
 - < DSP281 firmware
 - Typical of all radios
 - 50 watts
- New K3 FSK bandwidth
 - Optimal DSP filter
 - DSP281 firmware,
 March 2013
 - Lobby other mfrs

recommendation for minimum QRM

FSK

- 1) K3, or
- 2) QRP with other radios
- 3) Otherwise, use AFSK

AFSK

- 1) K3 or Flex
 - a) Enable K3 AFSK filter
 - b) 2Tone DOOK or AFSK
 - c) MMTTY 512-Tap
- 2) Other radios
 - a) 2Tone DOOK or AFSK
 - b) MMTTY 512-Tap

Resources

- www.rttycontesting.com premier website
 - Tutorials and resources (beginner to expert)
 - WriteLog, N1MM Logger+ and MMTTY
- <u>rtty@groups.io</u> Email reflector
 - RTTY contester networking
 - Q&A
- Software web sites
 - hamsoft.ca/ (MMTTY)
 - n1mm.hamdocs.com/tiki-index.php (N1MM Logger+)
 - www.writelog.com (WriteLog)
 - <u>www.win-test.com</u> (Win-Test)
- Software Email reflectors
 - mmtty@yahoogroups.com (MMTTY)
 - N1MMLoggerplus@groups.io (N1MM Logger+)
 - Writelog@contesting.com (WriteLog)
 - support@win-test.com (Win-Test)

Clublog QSOs by Mode

- TU, NW
- Multi-streaming transmission (Fox-Hound DXped.)
- RTTY replacement, or additional mode?
- Synchronous vs. asynchronous Tx/Rx cycles?

- TU, NW
 - CQ RU K1ABC FN42
 K1ABC W9XYZ 579 WI
 - W9XYZ K1ABC R 589 MA
 K1ABC W9XYZ RR73
 K1ABC G3AAA 559 0013
 - TU; G3AAA K1ABC R 569 MA

 K1ABC G3AAA RR73

 K1ABC P43A 599 2145
 - TU; P43A K1ABC R 599 MA

 K1ABC P43A RR73

 K1ABC K9CT 579 IL

2 cycles; 120 Q/hr

- 2 cycles; 120 Q/hr

- TU, NW
- Multi-streaming transmission (Fox-Hound DXped.)
 - Many Foxes, many Hounds (DXped: 1 Fox, many Hounds)
 - Moderate incoming rate (DXped: very high incoming rate)
 - Split freq. problematic (DXped: split freq. feasible)
 - Therefore:
 - Multi-signal or single-signal multi-partner?
 - Multi-signal: Signal voltage/n → Signal power/n²
 - Limit to 2 or 3 or n streams?
 - Run or S&P per stream?
 - Run vs. S&P could be dynamic per QSO partner
 - Run & S&P mixed within stream

- TU, NW
- Multi-streaming transmission (Fox-Hound DXpeditioning)
- Additional mode or RTTY replacement?
 - Choice:
 - Exploit inherent multi-channel strengths, or
 - Reduce Tx cycle time by widening BW and lowering sensitivity
 - How much QSO rate is needed?
 - Service rate >> incoming rate

- TU, NW
- Multi-streaming transmission (Fox-Hound DXpeditioning)
- Additional mode or RTTY replacement?
- Synchronous vs. asynchronous Tx/Rx cycles?
 - 0, 15, 30 and 45 seconds vs. operator initiated like RTTY

Synchronous vs. Asynchronous

Synchronous

- multi-streaming
- SO2R "lockout"
- signal density
- better decoding
- auto sequencing
- QRM immunity
- even/odd cycle usage
- no "doubling"

Asynchronous

- higher rate?
- no clock sync
- no time lost for unsync'd clocks
- no decoding time lost each Tx cycle
- high CPU demand at end of each Rx cycle
- easier integration with contest loggers

FT8 Contest Rules Future

- Multi-channel -> Assisted/Unlimited?
- How much automation?
 - Operator initiate each QSO?
 - Or, allow maximum automation and allow SO to run a MM?
- Multi-mode digital contests?
 - CW/SSB/"Digital" or CW/SSB/RTTY/FT8 modes?
- 100 watt limit?
- Participation determines which mode(s) prevail

Conclusions

- FT8 is controversial
 - Explosive adoption threatens RTTY
 - Fear of robotic, unattended operation
 - Threatening to many "legacy" hams, but more appealing than CW/SSB/RTTY to new hams
- FT8 has instantly entrenched itself as:
 - A primary amateur mode
 - The pre-eminent digital DXing mode
- Will contest rules let FT8 be all it can be?
- Will FT8 subsume RTTY in digital contesting or become an additional mode? (Contest participation will determine)
- Multiple digital modes in a single contest:
 - + Increases overall participation
 - Dilutes per-mode participation
 - = Net?

Resources

- WSJT-X 2.0 web site with download link: https://physics.princeton.edu/pulsar/k1jt/wsjtx.html
- WSJT-X 2.0 Quick-Start Guide: https://physics.princeton.edu/pulsar/k1jt/Quick_Start_WSJT-X_2.0.pdf
- MSHV web site: <u>http://lz2hv.org/mshv</u>
- FT8 Roundup web site with tutorial: https://www.rttycontesting.com/ft8-roundup
- ARRL FT8 Press Release: http://www.arrl.org/news/ft8-to-be-permitted-in-2019-arrl-rtty-roundup

