

Update on the Personal Space Weather Station Project & HamSCI Activities for 2021

Nathaniel A. Frissell, W2NAF

The University of Scranton

Contest University 2021 Propagation Summit January 23, 2021

Hamsci Ham radio Science Citizen Investigation

hamsci.org/dayton2017

Founder/Lead HamSCI Organizer:
Dr. Nathaniel A. Frissell, W2NAF
The University of Scranton

A collective that allows university researchers to collaborate with the amateur radio community in scientific investigations.

Objectives:

- 1. Advance scientific research and understanding through amateur radio activities.
- **2. Encourage** the development of new technologies to support this research.
- **3. Provide** educational opportunities for the amateur radio community and the general public.

HamSCI Activities

- Google Group (Over 350 Members)
- Weekly Telecons
- Participation in
 - Professional Science Meetings
 - Amateur Radio Conventions
- Annual HamSCI Workshop
- Close collaboration with TAPR (tapr.org)

Join at https://hamsci.org/get-involved

Current Projects

- 1. Personal Space Weather Station
 - 1. Development and Engineering
 - 2. Science
- 2. Research using existing amateur radio observation networks.

HamSCI Personal Space Weather Station

PSWS Teams

University of Scranton

- Nathaniel Frissell W2NAF (PI)
- Dev Joshi (Post-Doc)

Responsibilities

- Lead Institution
- HamSCI Lead
- Radio Science Lead

University of Alabama

- Bill Engelke AB4EJ (Chief Architect)
 - Travis Atkison (PI)

Responsibilities

- Central Database
- Central Control Software
- Local Control Software

TAPR & Zephyr Engineering

- Scotty Cowling WA2DFI (Chief Architect)
- Tom McDermott (RF Board)
- John Ackerman N8UR (Clock Module)
- David Witten KD0EAG (Magnetometer)
- David Larsen KV0S (Website)

Inc.

• TangerineSDR (High Performance)

Data Engine

Ground Magnetometer

Case Western Reserve University Case Amateur Radio Club W8EDU

- David Kazdan AD8Y (Lead) Kristina Collins KD8OXT
- Soumvaiit Mandal (PI) Matt McConnell KC8AWM
- John Gibbons N8OBJ
- · Skvlar Dannhoff KD9JPX
- Aidan Montare KB3UMD

Responsibilities

Low Cost PSWS System

MIT Haystack Observatory

Phil Erickson W1PJE

Responsibilities

Science Collaborator

New Jersey Institute of Technology

- Hyomin Kim KD2MCR (PI)
- Gareth Perry KD2SAK
 - Andy Gerrard KD2MCQ

Responsibilities

- Ground Mag Oversight & Testing
- Science Collaborators

F

"Grape" Low Cost PSWS

"Grape Receiver" Generation 1 by J. Gibbons N8OBJ

Raspberry Pi 4 with Switching Mode Power Supply for Grape Receiver and GNSS Disciplined Oscillator

NIST Standards Station WWV in Fort Collins, CO is the primary signal source for Grape PSWS receivers.

[https://www.nist.gov/image-23112]

Scientific SDR (TangerineSDR)

Developed as "TangerineSDR" by TAPR

Data Engine Specifications

- Altera/Intel 10M50DAF672C6G FPGA 50K LEs
- 512MByte (256Mx16) DDR3L SDRAM
- 4Mbit (512K x 8) QSPI serial flash memory
- 512Kbit (64K x 8) serial EEPROM
- µSDXC memory card up to 2TByte

Data Engine Features

- 11-15V wide input, low noise SMPS
- 3-port GbESwitch (Dual GbEdata interfaces)
- Cryptographic processor with key storage
- Temperature sensors (FPGA, ambient)
- Power-on reset monitor, fan header

RF Module

- AD9648 125 dual 14 bit 122.88Msps ADC
- 0dB/10dB/20dB/30dB remotely switchable attenuator
- LTC6420 20 20dB LNA
- Fixed 55MHz Low Pass Filter
- Optional user defined plug in filter
- On-board 50Ω calibration noise source
- On-board low noise power supplies
- Dual SMA antenna connectors

GNSS/Timing Module

- Precision timestamping (10 to 100 ns accuracy)
- Frequency reference (Parts in 10¹³ over 24 hr)

More Information at tangerinesdr.com

Why a New SDR?

- Current commercial HF SDRs do not have:
 - Dual, phase-locked, receive channels
 - GPS precision timestamping
 - GPSDO Frequency Stability
 - Wide-band HF Signal Processing
 - Low cost
 - Integrated system for wide-scale scientific data collection

What are the science goals we are after?

- •Broadly, we are trying to design a general device that will be useful for many different science targets:
 - Solar Flare Impacts
 - Geomagnetic/Ionospheric Storms
 - Internal Ionospheric Electrodynamics
 - Short time scale/small spatial scale ionospheric variability
 - Connections with Lower Atmosphere

How does this help amateur radio?

- •The PSWS needs to have a direct benefit to amateur radio.
- •FT8 / WSPRNet monitor already implemented.
- Working on best practices for having PSWS co-exist with amateur transmitting equipment
- •Looking for novel approaches to use the science data to help amateur radio.
- What applications can you think of?

wsprnet.org

Amateur Radio Frequencies and Modes

Eclipsed SAMI3 - PHaRLAP Raytrace

1600 UT 21 Aug 2017 • 14.03 MHz • TX: AA2MF (Florida) • RX: WE9V (Wisconsin)

PHaRLAP: Cervera & Harris, 2014, https://doi.org/10.1002/2013JA019247 SAMI3: Huba & Drob, 2017, https://doi.org/10.1002/2017GL073549

- Amateurs routinely use HF-VHF transionospheric links.
- Often ~100 W into dipole, vertical, or small beam antennas.
- Common HF Modes
 - Data: FT8, PSK31, WSPR, RTTY
 - Morse Code / Continuous Wave (CW)
 - Voice: Single Sideband (SSB)

	Frequency	Wavelength
LF	135 kHz	2,200 m
MF	473 kHz	630 m
	1.8 MHz	160 m
HF	3.5 MHz	80 m
	7 MHz	40 m
	10 MHz	30 m
	14 MHz	20 m
	18 MHz	17 m
	21 MHz	15 m
	24 MHz	12 m
	28 MHz	10 m
VHF+	50 MHz	6 m
	And more	

SAMI3-PHaRLAP Raytrace

SAMI3/PHaRLAP Simulation

21 August 2017 1600 – 2200 UT 14.03 MHz

TX: AA2MF (Florida) RX: WE9V (Wisconsin)

Eclipse 2017-08-21 16:00:00

Refraction as a Function of Frequency

Space Weather From Above

Atmospheric Structure

Ionosphere

F: 150 – 500 km

E: 90 – 150 km

D: 60 – 90 km

https://www.agci.org/earth-systems/atmosphere

Whole Atmosphere Coupling

From Pedatella et al., (2018) (https://doi.org/10.1029/2018E0092441)

What affects the ionosphere?

- Forcing from Above
 - Solar Origin
 - Magnetospheric Origin
- Forcing from Below
 - Tropospheric Origin
 - Stratospheric Origin

Traveling Ionospheric Disturbances

- •TIDs are Quasi-periodic Variations of F Region Electron Density
 - Medium Scale (MSTID)
 - $T \approx 15 60 \text{ min}$
 - $v_H \approx 100 250 \text{ m/s}$
 - λ_H ≈ Several Hundred km (< 1000 km)
 - Often Meteorological Sources
 - Large Scale (LSTID)
 - $\lambda_h > 1000 \text{ km}$
 - 30 < T [min] < 180
 - Often Auroral Electrojet Enhancement, Particle Precipitation
- Often associated with Atmospheric Gravity Waves

[Francis, 1975; Hunsucker 1982; Ogawa et al., 1967; Ding et al., 2012; Frissell et al., 2014; 2016]

- Typically thought to be caused by
 - Auroral/Space Weather Activity
 - Lower/Middle Atmospheric Disturbances

SuperDARN Radars

14 MHz MSTID Simulation

[Frissell et al., 2016]

Example SuperDARN MSTID

MSTIDs Nov 2012 – May 2013

MSTID Quiet

Amateur Radio Observation Networks

Reverse Beacon Network (RBN)
reversebeacon.net

WSPRNet wsprnet.org

PSKReporter pskreporter.info

- Quasi-Global
- Organic/Community Run
- Unique & Quasi-random geospatial sampling
- Data back to 2008 (A whole solar cycle!)
- Available in real-time!

November 4, 2017

20171103.1200-20171104.0000_timeseries.png

What is Total Electron Content (TEC)?

- TEC is a measure of the total number of electrons between a GPS/GNSS satellite transmitter and GPS/GNSS receiver.
- It is derived from the difference in phase delay of two different frequencies passing through the ionospheric plasma.

Estimated GNSS TEC LSTID Parameters

 $\lambda_{\rm h} \approx 1,100 \; {\rm km}$

 $v_p \approx 950 \text{ km/hr}$

 $T \approx 70 \text{ min}$

 $\Phi_{\mathsf{Azm}} \approx 135^{\circ}$

GNSS TEC Comparison 18:00 - 21:00

 Radio range is shortest when TEC is red (higher TEC)

Comparison with SuperDARN MSTID Statistics

Amateur Radio TID Statistics 2017

RBN/WSPR statistical study by Diego Sanchez, KD2RLM [2020]

Blackstone, VA SuperDARN MSTID Statistics 2010

[Frissell et al., 2014]

Measuring TIDs (and More) with Doppler Shifts

- •When the propagation path length changes as the refraction heigh moves up and down, the ionosphere imposes a Doppler shift on the signal.
- Typical observed values are fractions of a Hz to a few Hz.
- Causes include TIDs, Solar Flares, Eclipses, Dawn/Dusk Terminator

Figure by Kristina Collins, KD8OXT

Measuring Doppler – Ham Rig?

You can't use just any old Ham rig to measure Doppler shift!

- •A typical amateur receiver often has frequency stability and accuracy on the order of ±5-10 Hz.
 - Fine for normal communications.
 - •Not fine for ionospheric Doppler measurements, which are often smaller than ±3 Hz.

GPS Disciplined Oscillators (GPSDO)

- Synchronizes to GPS Clocks
- •GPS Clocks use Cesium References
- •Long-term stability approaches 10⁻¹²
 - •±0.00001 Hz at 10 MHz

•Some, but not all amateur radios let you connect a GPSDO without modification.

Mini Precision GPS Reference Clock
http://www.leobodnar.com/
~\$135 USD

Icom IC-7610

Icom IC-7610

Amateur Radio HF Doppler Measurements

- 1. GPSDO-lock receiver.
- 2. Put radio in USB mode.
- 3. Tune dial 1 kHz below carrier to be measured (e.g. 9999 kHz for 10 MHz WWV)
- 4. Feed audio into Spectrum Lab by DL4YHF to record WAV files and visualize spectrum.

13 Oct 2019

Ft. Collins, CO 40.68°N, -105.04°E to San Antonio, TX 29.57°N. -98.89°W

Courtesy of Steve Cerwin WA5FRF

"Grape" Low Cost PSWS

- •The Grape Generation 1 mixes the incoming HF signal directly with the Leo Bodnar GPSDO reference.
- •This provides a relatively inexpensive way to make these precision measurements.

"Grape Receiver" Generation 1 by J. Gibbons N8OBJ

Raspberry Pi 4 with Switching Mode Power Supply for Grape Receiver and GNSS Disciplined Oscillator

